ONFI 4.0: Faster I/O speeds at lower power consumption

Terry Grunzke
Micron Technology
ONFI 4.0: Adopted April 2014

- Reduces I/O power consumption
 - Lower I/O voltage
 - Reduced termination requirements

- Increases I/O performance
 - Scale I/O speeds faster as NAND page sizes grow
 - Soft data requirements
 - Latency reduction

- Continues interoperability between vendors
 - Collaboration in JC42.4 ONFI/JEDEC Joint Task Group
ONFI Workgroup Continues To Produce Results!

<table>
<thead>
<tr>
<th>Major Revisions</th>
<th>ONFi 1.0: Standard electrical & protocol interface, including base command set</th>
<th>ONFi 2.0: Defined a high speed DDR i/f, tripling the traditional NAND bus speed in common use</th>
<th>ONFi 2.x: Additional features and support for bus speeds up to 200 MB/s</th>
<th>EZ NAND / ONFi 2.3: Enabled ECC/management offload option</th>
<th>ONFi 3.0: Scaled high speed DDR i/f to 400 MT/s</th>
<th>ONFi 3.x: Scaled high speed DDR i/f to 533 MT/s</th>
<th>ONFi 4.0: Scaled high speed DDR i/f to 800 MT/s, Reduce VccQ support to 1.2V (NV-DDR3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Speed</td>
<td>50 MB/s</td>
<td>133 MB/s</td>
<td>200 MB/s</td>
<td>400 MB/s</td>
<td>533 MB/s</td>
<td>800 MB/s</td>
<td></td>
</tr>
<tr>
<td>Industry</td>
<td>ONFi – JEDEC Collaboration</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ONFI has and continues to deliver innovation & interoperability enabling faster NAND adoption
ONFI 4.0 Features

- **NV-DDR3:**
 - $V_{ccQ} = 1.2V$ (1.14V – 1.26V)
 - Evolutionary interface from NV-DDR2
 - Same packaging, Opcodes, timing diagrams/parameters, etc
 - All of the ONFI 3.x features will continue to be supported
 - Matrix Termination, CE reduction, Volume addressing, Differential signaling, VPP, External VrefQ, Warm Up cycles, etc…
 - Same output drive strength and RTT settings

- **Maximum I/O speeds increased**
 - 667 MT/s and 800 MT/s timing modes added

- **ZQ calibration supported**
 - $R_{ZQ} = 300$ ohms +/- 1%
 - Long (F9h) and Short (D9h) Calibration commands
ONFI 4.0 Differences

- Devices that support NV-DDR3 may not support VccQ = 3.3V
- NV-DDR3 Interface will not power up in SDR (i.e. Async)
 - SDR, NV-DDR, NV-DDR2 not supported at VccQ=1.2V
 - Agnostic READ ID will provide information on power on interface
- tADL and tCCS will push out due to larger page sizes and data path design requirements to achieve faster I/O speeds
- Electrical Package Specifications for Zpk and Tpd
 - Same methodology as DRAM DDR4
- Possible reduced Driver strength settings supported
ONFI 4.0 Performance

- Numbers are highly dependent on NAND/system architecture
 - Page size / number of LUNs
 - Number of planes
 - tPROG/tR
 - Programming Algo
 - Available System buffering

- SI highly dependent on a number of factors
 - Topology
 - Channel length
 - Package Zpk/Tpd
 - PCB Design
 - Impedance
 - Trace matching
 - Available drive strengths/RTT
 - RON/RTT variance
 - Controller overshoot restrictions
 - Controller/NAND capacitance

Case 1: 32KB “super” page, tPROG(typ) = 1300us, 8 die active
Case 2: 64KB “super” page, tPROG(typ) = 1100us, 12 die active
Read Latency

4KB read latency has diminishing returns
ONFI 4.0 Bus Power Reduction

- **Switching power reduction**
 - $P = FV^2C$
 - V: 1.8V -> 1.2V
 - C: Significantly Reduced
- **Termination power reduction**
 - Rtt requirements reduced
- **NAND data path power reduction**
 - Can provide improved NAND data path power biasing
Power comparisons

SSD topology with two QDP packages per channel (8 die)
Reduced Loading

• Reduced Die Capacitance and smaller signaling also enables new topologies and increased fan-out:
 • 8 Die per channel at 400 MT/s with no termination
 • 16 Die per channel at 533 MT/s
 • 12 Die per channel at 667 MT/s
 • 8 Die per channel at 800 MT/s

Estimates are based on Signal Integrity analysis, actual performance may vary based on a number of system variables
More LUNs per channel

At lower power consumption
Summary

• ONFI 4.0 provides:
 • I/O Performance improvements
 • I/O and NAND Power consumption improvements
 • Straightforward evolutionary enablement
 • Industry interoperability

• ONFI 4.0 specification available for download
 • www.onfi.org/specifications